
Biology Magnets Module 0: Organic Molecules - Teacher and Student Guides

Teacher Information

This module uses magnets designed for teacher and student interaction to guide learning the parts of an atom. Contained in this guide are different lesson ideas that can last from 10 minutes each to an entire class period, depending upon teacher preference. Each lesson has both teacher-centered and student-centered activities. The student-centered activities are most effective if students are in small groups. It may be necessary to have multiple magnet sets for large classes. A student handout is provided which can be printed out and given to each student group to help guide their progress as they work with the magnets. If budget or white board space is limited, groups can alternate between using a set of magnets and doing other activities. Teachers can refer to the videos posted at the Biology Magnet web site at Biologymagnets.com for guided teaching instructions.

Magnet Care and Maintenance

Biology magnets are made to last for years. Periodically magnets will fall off or are knocked off the plastic. A piece of magnetic tape is included with each module, which should be able to replace around 10-12 magnets if necessary. Simply cut a new magnet and peel off the back to replace. Magnetic tape can be purchased from a hobby store to replace magnets lost over time. Laminate may peel off, especially on small pieces. Use transparent tape to re-attach laminate that comes loose, curling the tape over the back of the magnet. The machines used to cut Biology Magnets are not always perfectly accurate. Sometimes a bit of white or black outline on the edges occurs or a cut might be slightly off center. Use scissors to remove extra outline that is unnecessary if desired. Store magnets in the clasp envelopes in which they arrived for easy organization.

Organic Molecules Copyright and Licensing Information

Except for those works noted as being in the public domain, all other images are modifications or derivative works of original works that are copyrighted by, and used pursuant to Creative Commons licenses. As such, any copying, modification, or other public use, display or distribution of such works, other than the intended use within an educational classroom setting must be done in compliance with Creative Commons licensing requirements. Further information concerning the same can be found at https://creativecommons.org/

Protons, Neutrons, Electrons - ©2020 Tom Willis all rights reserved

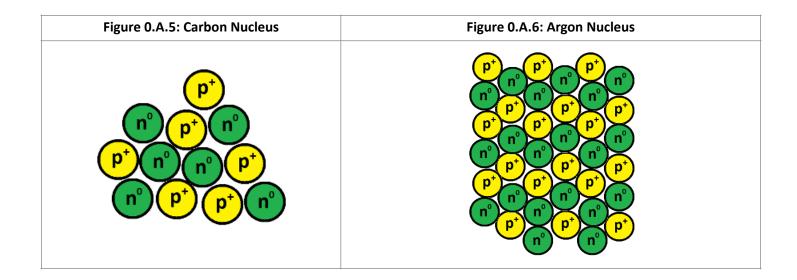
Periodic Table of the Elements – The molecular structure files are licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license. By User: Perhelion - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=15720854.

Magnet Name	Quantity	Picture
Proton	21	₽
Neutron	21	n°
Electron	21	e
3" Magnetic Tape Strip	1	

Biology Magnets Module 1 Materials List

Lesson 0A – Atomic Nuclei (10-50 minutes)

Teacher Centered Activity (10-20 minutes): This lesson utilizes the protons and neutrons to build atomic nuclei. Use the periodic table of the elements to help teach this section (**Figure 0.A.1**).


Figure 0.A.1: Periodic Table of the Elements

		\odot	6	ତ	۲	\odot	\odot	Θ	
		Fran- cium 87 [223]	Cae- sium 55 132.91	Rubid- ium 37 Rb 85.468	Potas- sium 19 39.098	11 12.990	Lithium 3 6.94	Hydro- gen 1.008	
		Radium 88 Ra [226]	Barium 56 Ba 137.33	Stront- lum 38 Sr 87.62	Cal- 20 40.078	Magne- sium 12 Mg 24.305	Beryl- lium 4 9.0122	N	,
**	*	**	*						
Actin- Ium 89 [227]	Lan- thanum 57 La 138.91	Lawren- cium 103 Lr [266]	Lute- tium 71 Lu 174.97	Yttrium 39 4 88.906	Scan- dium 21 Sc 44.956]			,
Thor- 100 100 232.04	Cerium 58 Ce 140.12	104 [267]	Haf- nium 72 Hf 178.49	Zirco- nium 40 Zr 91.224	Tita- nium 22 Ti 47.867]		4	•
Protac- tinium 91 Pa 231.04	Praseo- dymium 59 Pr 140.91	Dub- 105 [268]	Tanta- Ium 73 Ta 180.95	Nio- bium 41 92.906	Vana- dium 23 50.942]		o	•
Ura- nium 92 238.03	Neo- dymium 60 Nd 144.24	Sea- borgium 106 Sg [269]	Tung- sten 74 183.84	Molyb- denum 42 95.95	Chrom- ium 24 51.996			σ	
Neptu- nium 93 [237]	Prome- thium 61 [145]	Bohr- ium 107 Bh [270]	Rhe- nium 75 Re 186.21	Tech- netium 43 Tc [98]	Manga- nese 25 Mn 54.938]		_	riodio
Pluto- nium 94 244	Sama- rium 62 Sm 150.36	Has- sium 108 Hs [270]	0s- mium 76 Os 190.23	Ruthe- nium 44 101.07	Iron 26 Fe 55.845]		α	Table
Ameri- cium 95 Am	Europ- ium 63 Eu 151.96	Meit- nerium 109 Mt [278]	Iridium 77 Ir 192.22	Rho- dium 45 102.91	Cobalt 27 Co 58.933]		6	of the
96 1247	Gadolin- ium 64 157.25	Darm- stadtium 110 Ds [281]	Plat- inum 78 195.08	Pallad- ium 46 Pd 106.42	Nickel 28 Ni 58.693]		10	Periodic Table of the Elements
Berkel- ium 97 Bk [247]	Ter- bium 65 Tb	Roent- genium 111 Rg [282]	Gold 79 Au 196.97	Silver 47 Ag 107.87	Copper 29 63.546]		3	ents
Califor- nium 98 [251]	Dyspro- sium 66 Dy 162.50	Coper- nicium 112 [285]	Mer- cury 80 Hg 200.59	Cad- mium 48 112.41	Zinc 30 2 n 65.38]		12	;
Einstei- nium 99 Es	Hol- mium 67 Ho 164,93	Nihon- ium 113 Nh [286]	Thallium 81 TI 204.38	Indium 49 114.82	Gallium 31 Ga 69.723	Alumin- ium 13 26.982	Boron 5 10.81	<u>ت</u>	;
Fer- 100 [257]	Erbium 68 Er 167.26	Flerov- ium FI [289]	Lead 82 Pb 207.2	Tin 50 Sn 118.71	Germa- nium 32 Ge 72.630	Silicon 14 28.085	Carbon 6 12.011	4	:
Mende- levium 101 Md [258]	Erbium 68 69 Er 167.26 168.93	Moscov- ium 115 Mc [290]	Bis- muth 83 83 83	Anti- mony 51 Sb 121.76	Arsenic 33 As 74.922	Phos- phorus 15 30.974	gen 7 14.007		
Nobel- lum 102 No [259]	Ytter- bium 70 Yb 173.05	Liver- morium 116 Lv [293]	Polo- nium 84 [209]	Tellur- ium 52 Te 127.60	Sele- nium 34 Se 78.971	Sulfur 16 32.06	Oxygen 8 15.999	5	:
		Tenness ine 117 Ts [294]	Asta- tine 85 At [210]	lodine 53 126.90	Bromine 35 Br 79.904	Chlor- ine 17 35.45	Filuor- 9 18.998		
		2 Oga- nesson 118 Og [294]	Radon 86 [222]	Xenon 54 Xe 131.29	Krypton 36 Kr 83.798	Argon 18 39.95	10 20.180	Helium 4.0026	

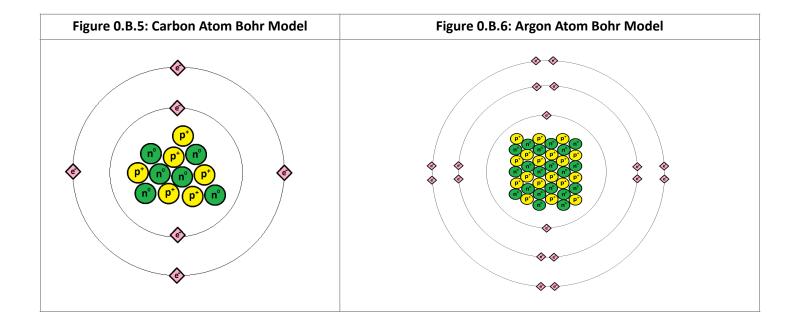
Start by showing students how to build the nuclei of various atoms. There are enough magnets in the kit to build any atomic nucleus with up to 21 protons and/or neutrons. It is recommended to start with smaller atoms and work your way up. Determine the number of neutrons in the average nucleus by rounding the atomic mass to the nearest whole

number and subtracting the atomic number from that. Some examples of various nuclei are shown in the figures below (Figure 0.A.1-0.A.6)

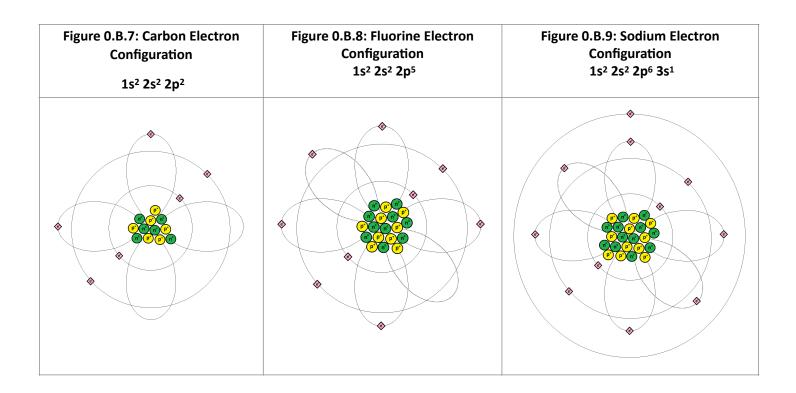
Figure 0.A.1:	Figure 0.A.2: Helium	Figure 0.A.3: Lithium	Figure 0.A.4: Beryllium Nucleus
Hydrogen Nucleus	Nucleus	Nucleus	
p⁺	p ⁺ n ⁰ n ⁰ p ⁺	$n^{0} p^{+}$ $p^{+} n^{0}$ $n^{0} p^{+}$	$ \begin{array}{c} n^{0} p^{+} n^{0} \\ p^{+} n^{0} n^{0} p^{+} \\ n^{0} p^{+} \end{array} $

Student Centered Activity (10-30 minutes): After teaching the structures, put students into small groups. A copy of the student guide for parts of the atom may be given to each group if necessary. Using the periodic table, have the students take turns building atomic nuclei for various atoms, starting from small to large. Allow the students to correct and help one another. Have one student build an atomic nucleus and then let the other members of the group figure out what atom it is. Then have one student place a number of protons on the board and have the other students try to figure out how many neutrons would go with it for a normal atom by using the periodic table.

Extra exercises:


Nuclei Quiz Race: Call out the name of an element and let the students build the nucleus as fast as they can. Eliminate the last one to finish then do another element. Continue until one group is left.

Research nucleons and quarks: Have the students research protons and neutrons and describe the subunits of which they are made. Students can use index cards and magnetic tape to make magnets that represent quarks and put them together to form protons and neutrons. Include the charge of each quark on the magnets (e.g. -1/3, +2/3) to show how the various combinations add up to the positive charge of protons and neutral charge of neutrons.


Lesson OB – Electron Configurations (10-50 minutes)

Teacher Centered Activity (10-20 minutes): Use the Biology magnets to build electron configurations for various atoms. Start by using the Bohr model. Have students draw the electron levels using a marker and placing the appropriate numbers of electrons in each level. Level 1 can hold 2 electrons, and level 2 and 3 can hold 8 (**Figure 0.B.1-6**).

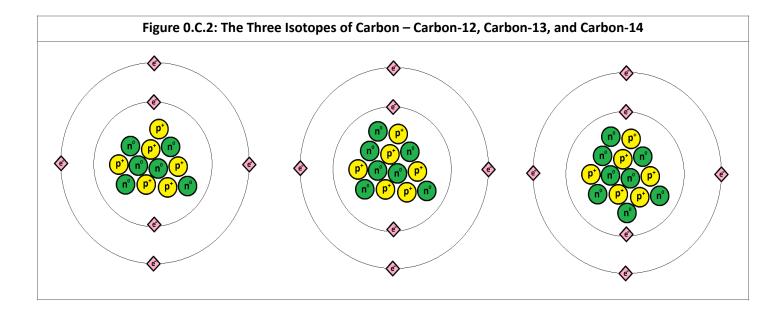
Figure 0.B.1: Hydrogen	Figure 0.B.2: Helium	Figure 0.B.3: Lithium Atom	Figure 0.B.4: Beryllium Atom Bohr
Atom Bohr Model	Atom Bohr Model	Bohr Model	Model
(P)	p ⁺ n ⁰ n ⁰ p ⁺ e	¢ () () () () () () () () () ()	

Next, show the electron configuration using subshells, drawing the s and p orbitals and placing the electrons properly within each orbital. Have the students figure out the proper electron configuration notation for each atom, build the nucleus of the atom, then place the electrons in their proper orbitals. Have the students use markers to do a rough drawing of the electron orbitals in which they place the electrons. S orbitals are spherical, and p orbitals are shaped like a figure 8. Each successive electron level should be made larger than the previous to accurately model larger atoms. For example, carbon has 6 protons and 6 electrons and thus would be $1s^2 2s^2 2p^2$. Fluorine with 9 protons and 9 electrons would be $1s^2 2s^2 2p^5$. Sodium with 11 protons and 11 electrons would be $1s^2 2s^2 2p^6 3s^1$ (Figure O.B.7-9).

Student Centered Activity (10-30 minutes): After teaching electron configurations, put students into small groups. A copy of the student guide for parts of the atom may be given to each group if necessary. Using the periodic table, have the students take turns building atomic nuclei for various atoms, starting from small to large, then add in the electron configurations. Start with Bohr models and then go to standard orbital configurations. Allow the students to correct and help one another.

Extra exercises:

D orbitals: Scandium, atomic number 21, has an electron in the 3d orbital. Have students research, draw the first d orbital, and then place the final electron. Students can make larger atoms and draw in the protons, neutrons, and electrons if necessary to fill other D orbitals.


Chemical Bonds: Have the students model chemical bonding using the magnets. Covalent bonding involves sharing electrons between two atoms, and ionic bonding involves the loss and gain of electrons by atoms. The H₂O molecule is a good example of covalent bonding and Li-F is a good example of ionic bonding.

Ions: Have the students create various ions by adding or removing electrons to the atom. Students can research ions online and demonstrate how the ion would be made starting with the uncharged atom.

Lesson OC – Isotopes (15-80 minutes)

Teacher Centered Activity (10-20 minutes): Use the Biology magnets to build isotopes for various elements. Hydrogen has three different isotopes. Hydrogen-1 (protium), hydrogen-2 (deuterium), and hydrogen-3 (tritium). Each have one proton and 0, 1, and 2 neutrons respectively. Carbon comes in three isotopes as well, carbon-12, carbon-13, and carbon-14. Have students build the atoms and show the different isotopes by adding and/or removing neutrons. (**Figure 0.C.1-2**).

Student Centered Activity (10-30 minutes): After teaching isotopes, put students into small groups. A copy of the student guide for parts of the atom may be given to each group if necessary. Using the periodic table, have the students take turns building isotopes for various atoms, adding or removing neutrons to represent the various isotopes. Teachers can provide a table or have students research online which isotopes are common for various elements.

Extra exercise:

Radioactive Isotopes: Some isotopes are radioactive. Students can research which isotopes are radioactive and can model how they decay. For example, carbon-14 will decay into nitrogen-14 when a neutron becomes a proton and emits an electron. Students can use the Biology Magnets to demonstrate this decay.

Lesson 0A – Atomic Nuclei – Student Handout

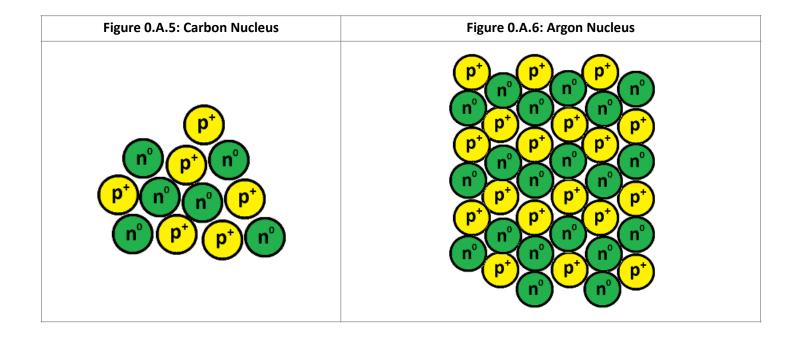
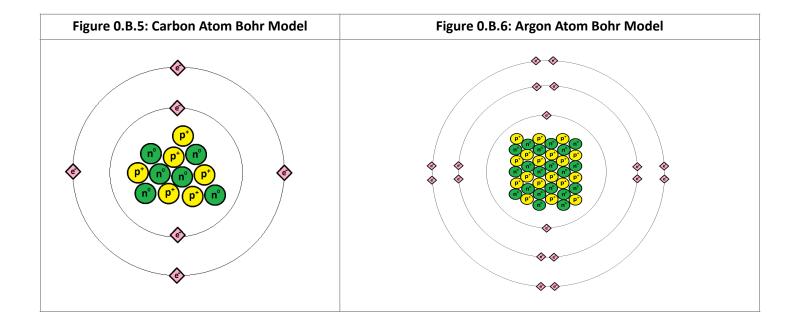

Student Centered Activity: This lesson utilizes the protons and neutrons to build atomic nuclei. Use the periodic table of the elements to help you with this section (**Figure 0.A.1**).

Figure 0.A.1: Periodic Table of the Elements

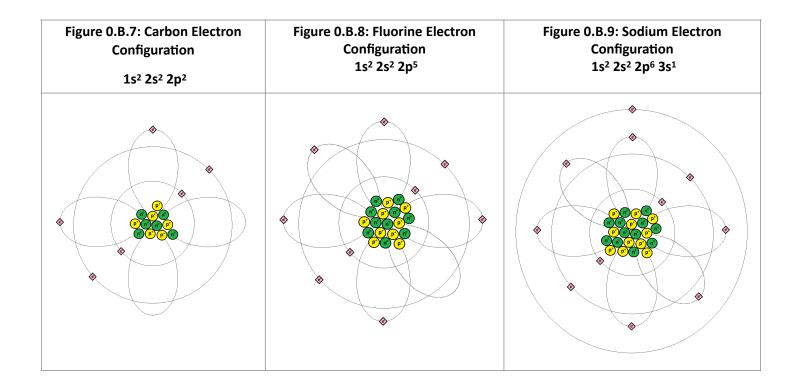
		0	6	9	٩	Θ	\odot	Θ	
		Fran- cium 87 [223]	Cae- sium 55 Cs 132.91	Rubid- ium 37 Rb 85.468	Potas- sium 19 39.098	11 12.990	3 6.94	gen 1.008	-
		Radium 88 [226]	Barium 56 Ba 137.33	Stront- lum 38 Sr 87.62	Cal- 20 40.078	Magne- sium 12 24.305	Beryl- lium 4 9.0122		22
**	*	**	*					_	
Actin- Ium 89 [227]	Lan- thanum 57 La 138.91	cium 103 [266]	Lute- tium 71 Lu 174.97	Yttrium 39 88.906	Scan- dium 21 Sc 44.956]			ω
Thor- 90 77	Cerium 58 Ce 140.12	Ruther- fordium 104 Rf [267]	Haf- nium 72 Hf 178.49	Zirco- nium 40 91.224	Tita- nium 22 47.867]			4
Protac- tinium 91 Pa 231.04	Praseo- dymium 59 Pr 140.91	Dub- 105 [268]	Tanta- Ium 73 Ta 180.95	Nio- bium 41 92.906	Vana- dium 23 50.942]			Ch
Ura- nium 92 238.03	Neo- dymium 60 Nd 144.24	Sea- borgium 106 Sg [269]	Tung- sten 74 W 183.84	Molyb- denum 42 95.95	Chrom- ium 24 51.996]			P
Neptu- nium 93 [237]	Prome- thium 61 Pm [145]	Bohr- ium 107 Bh [270]	Rhe- nium 75 Re 186.21	Tech- netlum 43 [98]	Manga- nese 25 54.938]			Periodic Table of the
Pluto- nium 94 [244]	Sama- rium 62 Sm 150.36	Has- sium 108 Hs [270]	0s- mium 76 Os 190.23	Ruthe- nium 44 101.07	1701 1702 1703 1704 1704 1704 1704 1704 1704 1704 1704]			: Table
Ameri- cium 95 Am [243]	Europ- ium 63 151.96	Meit- nerium 109 Mt [278]	Iridium 77 Ir 192.22	Rho- dium 45	Cobatt 27 Co 58.933]			9 of the
96 12471	Gadolin- ium 64 157.25	Darm- stadtium 110 Ds [281]	Plat- inum 78 Pt 195.08	Pallad- lum 46 Pd 106.42	Nickel 28 Ni 58.693]			e Elements
Berkel- lum 97 Bk	Ter- bium 65 Tb	Roent- genium 111 Rg [282]	Gold 79 Au 196.97	Silver 47 Ag 107.87	Copper 29 63.546]			11 Ients
Califor- nium 98	Dyspro- sium 66 Dy 162.50	Coper- nicium 112 Cn [285]	Mer- 80 200.59	Cad- mium 48 112.41	Zinc 30 55.38]			12
Einstei- nium 99 Es	Hol- mium 67 Ho 164.93	Nihon- lum 113 Nh [286]	Thallium 81 11 204.38	Indium 49 114.82	Gallium 31 Ga 69.723	Alumin- ium 13 26.982	5 10.81		13
Fer- 100 [257]	Erbium 68 Er 167.26	Flerov- ium 114 Fl [289]	Lead 82 Pb 207.2	Tin 50 118.71	Germa- nium 32 72.630	Silicon 14 28.085	Carbon 6 12.011		4
Mende- levium 101 Md [258]	Thulium 69 Tm 168.93	Moscov- ium 115 Mc [290]	Bis- muth 83 Bi 208.98	Anti- mony 51 121.76	Arsenic 33 As 74.922	Phos- phorus 15 30.974			15
Nobel- lum 102 No [259]	Ytter- bium 70 Yb 173.05	Liver- morium 116 Lv [293]	Polo- nium 84 [209]	Tellur- ium 52 Te 127.60	Sele- nium 34 Se 78.971	Sulfur 16 32.06	0xygen 8 0 15.999		16
		Tenness line 117 Ts [294]	Asta- tine 85 At [210]	lodine 53 126.90	Bromine 35 Br 79.904	Chlor- ine 17 35.45		5	17
		Oga- nesson 118 [294]	Radon 86 [222]	Xenon 54 131.29	Krypton 36 83.798	Argon 18 39.95	10 20.180	Hellum 2 4.0026	18

Start by building the nuclei of various atoms. There are enough magnets in the kit to build any atomic nucleus with up to 21 protons and/or neutrons. It is recommended to start with smaller atoms and work your way up. Determine the number of neutrons in the average nucleus by rounding the atomic mass to the nearest whole number and subtracting the atomic number from that. Some examples of various nuclei are shown in the figures below (**Figure 0.A.1-0.A.6**). Build some atomic nuclei that are not shown below as examples, and ask your teacher if they are correct.

Figure 0.A.1:	Figure 0.A.2: Helium	Figure 0.A.3: Lithium	Figure 0.A.4: Beryllium Nucleus
Hydrogen Nucleus	Nucleus	Nucleus	
₽	p ⁺ n ^o n ^o p ⁺	$n^{0} p^{+}$ $p^{+} n^{0}$ $n^{0} p^{+}$	$ \begin{array}{c} n^{\circ} p^{+} n^{\circ} \\ p^{+} n^{\circ} n^{\circ} p^{+} \\ n^{\circ} p^{+} \\ n^{\circ} p^{+} \\ \end{array} $


Extra exercise:

Research nucleons and quarks: Research protons and neutrons and describe the subunits of which they are made. If available, use index cards and magnetic tape to make magnets that represent quarks and put them together to form protons and neutrons. Include the charge of each quark on the magnets (e.g. -1/3, +2/3) to show how the various combinations add up to the positive charge of protons and neutral charge of neutrons.


Lesson OB – Electron Configurations – Student Handout

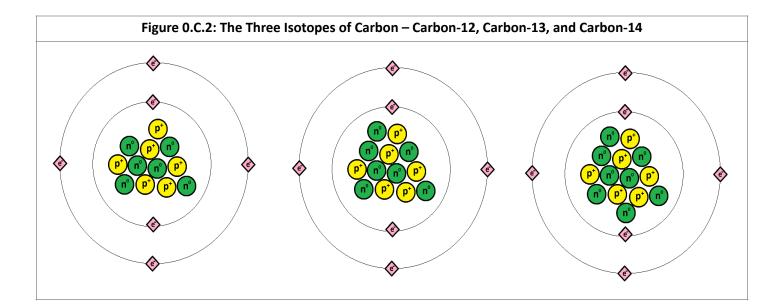
Student Centered Activity: Use the Biology magnets to build electron configurations for various atoms. Start by using the Bohr model. Have students draw the electron levels using a marker and placing the appropriate numbers of electrons in each level. Level 1 can hold 2 electrons, level 2 can hold 8 (**Figure 0.B.1-6**).

Figure 0.B.1: Hydrogen	Figure 0.B.2: Helium	Figure 0.B.3: Lithium Atom	Figure 0.B.4: Beryllium Atom Bohr
Atom Bohr Model	Atom Bohr Model	Bohr Model	Model
(p [*])	p ⁺ n ⁰ n ⁰ p ⁺ e		

Next, show the electron configuration using subshells, drawing the s and p orbitals and placing the electrons properly within each orbital. Figure out the proper electron configuration notation for each atom, build the nucleus of the atom, then place the electrons in their proper orbitals. Use markers to do a rough drawing of the electron orbitals in which they place the electrons. S orbitals are spherical, and p orbitals are shaped like a figure 8. Each successive electron level should be made larger than the previous to accurately model larger atoms. For example, carbon has 6 protons and 6 electrons and thus would be $1s^2 2s^2 2p^2$. Fluorine with 9 protons and 9 electrons would be $1s^2 2s^2 2p^5$. Sodium with 11 protons and 11 electrons would be $1s^2 2s^2 2p^6 3s^1$ (Figure O.B.7-9). Make several atoms with electron configurations other than the ones shown in the examples below.

Extra exercises:

D orbitals: Scandium, atomic number 21, has an electron in the 3d orbital. Research, draw the first d orbital, and then place the final electron. Make larger atoms and draw in the protons, neutrons, and electrons if necessary to fill other D orbitals.


Chemical Bonds: Model chemical bonding using the magnets. Covalent bonding involves sharing electrons between two atoms, and ionic bonding involves the loss and gain of electrons by atoms. The H₂O molecule is a good example of covalent bonding and Li-F is a good example of ionic bonding.

lons: Create various ions by adding or removing electrons to the atom. Research ions online and demonstrate how the ion would be made, starting with the uncharged atom.

Lesson OC – Isotopes – Student Handout

Student Centered Activity: Use the Biology magnets to build isotopes for various elements. Hydrogen has three different isotopes. Hydrogen-1 (protium), hydrogen-2 (deuterium), and hydrogen-3 (tritium). Each have one proton and 0, 1, and 2 neutrons respectively. Carbon comes in three isotopes as well, carbon-12, carbon-13, and carbon-14. Build the atoms and show the different isotopes by adding and/or removing neutrons. (**Figure 0.C.1-2**). Research on the internet or use instructions from your teacher to build isotopes for other elements not shown below.

Extra exercise:

Radioactive Isotopes: Some isotopes are radioactive. Research which isotopes are radioactive and model how they decay. For example, carbon-14 will decay into nitrogen-14 when a neutron becomes a proton and emits an electron. Use the Biology Magnets to demonstrate this decay.